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Outline ¢ ILLINOIS

This project is based on a new example in a manuscript that | am
revising. Our major reference in the review is Gésmann et al. (2021)
because they mentioned the possibility of our example in their
outlook; see also Dette and Gésmann (2020).

1. Basics of change point (CP) detection in time series

2. A simple way to improve some existing detectors
3. Simulations
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Types of problem it ILLINOIS

Retrospective (offline, not our focus)

= Data are completely available before the analysis
= Single CP vs multiple CPs

Sequential (online)

= Data arrive consecutively and any new point can be a CP
= Closed-end vs open-end

= Major part of the 20th century: control charts
= optimized for a minimal detection delay
= but usually do not control the false alarm rate (type | error)

Comment
There are papers that minimized the detection delay subject to a
false alarm rate control in the 20th century. However, we could not

pinpoint the origin from our major reference. 3/20



The following setup was originally introduced in Chu et al. (1996),
who use initial data sets and therefrom employ invariance principles

to control the type | error.

» {X:}tez: a d-dimensional time series

= F;: the distribution function of X;

» 0 =0(F;): a p-dimensional parameter of F;
= m: initial sample size (stable observations)
= Target: a decision rule for

HO 3 01 E—— 9[77 =] 9m+1 =] 9m+2 = ooog
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Types of detector it ILLINOIS

Common detectors are usually comparing estimators from different
subsamples of the data. Let ég be an estimator of # based on the
subsample X, ..., Xp.

= (Ordinary) CUSUM investigates

Hm nm+k
g s

m+1

= Page-CUSUM uses a function of

A k
{91 am:ﬁ-l}jzo,...,k—l

= Gosmann et al. (2021) propose using a function of

{0m+J g:ﬁl}j:o,...,k—l-
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1L ILLINOIS

Comment on the detectors

When the change point is far away from X1, é,’;’if maybe

‘corrupted’ by pre-change observations. Gésmann et al. (2021) point

out that Page-CUSUM and their proposal are able handle this
problem. However, we can see that this comes at the cost of

computational complexity.
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A specific detector it ILLINOIS

Goésmann et al. (2021) propose

o —1/2 k-1 . AM+j  Am+k \T<S_1/AM+] Am+k
(k) = m ™2 k- (B - Ot ) SR - Bk
Several more elements are needed:

= 3,.: along-run variance (LRV) estimator;
= w(-): a threshold function; and
= c(a): a critical value such that the test is level a (as m — o).

A CP is detected if w(k/m)Em(k)> c(a).
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Comment on the elements ¢ ILLINOIS

A

Comment on >

Although the LRV has not been formally introduced in our course, it
is not a completely new concept; see the asymptotic variance in the
central limit theorem (CLT) for m-dependent sequence, or the

spectral density.

Comment on w(-) (and c(a))

Restrictions on w(-) are needed so that sup}?, w(k/m)En(k)
converges to some limiting distribution. Gésmann et al. (2021)
consider a family of functions such that the limiting distribution can
be simulated more easily. We guess some w(-) may lead to a
smaller detection delay but searching one seems difficult.
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Animation of the detector L ILLINOIS

The setting of this example (0 = 3 is used) will be introduced in our

simulations.
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Definition of the LRV 0 ILLINOIS

For presentation purpose, suppose d =1 and 6 = E(X).

CLT for the mean of stationary sequence

Consider a stationary sequence {X;}+z with mean p and
autocovariance function 7. Under some suitable conditions (e.g.,
Hannan (1979)),

Vi (Xo - 1) > N(0,02),
where 02 = ¥ Y« is called the LRV.

If the parameter of interest is not the mean, we can use the influence
function (assuming its existence) to define the corresponding LRV.
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Some LRV estimators 7 ILLINOIS

Consistent (small-b)

» Subsampling estimator, e.g., overlapping batch means
(Meketon and Schmeiser, 1984):

5’2 _ Z?=€n (ZJ i— €n+1X [ X )
n,obm Z,’:gn fn .
= Kernel estimator, e.g., Bartlett kernel estimator (Newey and
West, 1987):
A2 bn kIY1 & _ _
On.bart = Z 1- e_ - Z (Xi - X”)(X"—W - Xpn).
k=—£n n i=|k|+1

Inconsistent (fixed-b)

= Self-normalizer (Shao, 2010)
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Difficulties with LRV estimation L ILLINOIS

In online CP detection, a LRV estimator often does not perform well
because

= the estimator is not robust to CP; or
= the estimator cannot be updated quickly.

Some existing solutions

= Gosmann et al. (2021) (use 42,): inefficient
= Dehling et al. (2020) (split the time series into 3): less efficient
= Shao and Zhang (2010) (account for the CP in SN): slower

= Chan and Yau (2017) (update &2 recursively): not robust

Comment

Goésmann et al. (2021) describe the use of 62, as the standard
approach. Indeed, several papers that we have read do the same.
12/20



A simple improvement it ILLINOIS

Difference statistics: add robustness to &2 through
g
Di =) diXijn
j=0
» {d;}: differencing sequence; g: differencing order; h: lag
= Chan (2021) proves the optimality in an offline setting

Window decomposition: allow recursive update of 62 through
Wi(i,j) = T (dn (.)) S (d3 (i, )))

= T(-): tapering function; S(-): subsampling function

= dT(i,j) and d2(i,j): distances between times i and j when
the sample size is n

= compatible with difference statistics
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Model 7 ILLINOIS

Consider a Bilinear model
Xi=(0.9+0.1¢))X; 1 +ei,  where & = N(0,1).
Let u; = E(X;). We are interested in testing
Ho:py === pim = pims1 = -+,
against
Hi:pn = = fmeke—1 # Pmeks = Bmekos1 =

With 100 burn-in and m = 400 initial observations, we simulate 1000
replications of H;j by

X = X + 61 esmeke.
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Detector 7 ILLINOIS

The online CP detector in Gésmann et al. (2021) can be written as

N _ k-1 . m+j wm A
En(k) = m0% ma(k— ) T = Xt /6,

where X2 = (b-a+1)"1£%, X; and 62 is a LRV estimator.
Following examples in Gosmann et al. (2021), we use

= threshold function: w(t) = (1+t)};
= nominal size: o =0.05; and
= stopping point: n* = 4000.
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Results when m + k* = 601 7 ILLINOIS
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Figure 1: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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Results when m + k* = 1001 7 ILLINOIS

(i) Power (ii) Precision (iii) Time until detection
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Figure 2: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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Results when m + k* = 1401

1L ILLINOIS
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Figure 3: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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