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Outline

This project is based on a new example in a manuscript that I am
revising. Our major reference in the review is Gösmann et al. (2021)
because they mentioned the possibility of our example in their
outlook; see also Dette and Gösmann (2020).

1. Basics of change point (CP) detection in time series
2. A simple way to improve some existing detectors
3. Simulations
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Types of problem

Retrospective (offline, not our focus)

• Data are completely available before the analysis
• Single CP vs multiple CPs

Sequential (online)

• Data arrive consecutively and any new point can be a CP
• Closed-end vs open-end
• Major part of the 20th century: control charts

• optimized for a minimal detection delay
• but usually do not control the false alarm rate (type I error)

Comment
There are papers that minimized the detection delay subject to a
false alarm rate control in the 20th century. However, we could not
pinpoint the origin from our major reference. 3/20



Setup

The following setup was originally introduced in Chu et al. (1996),
who use initial data sets and therefrom employ invariance principles
to control the type I error.

• {Xt}t∈Z: a d-dimensional time series
• Ft : the distribution function of Xt

• θt = θ(Ft): a p-dimensional parameter of Ft

• m: initial sample size (stable observations)
• Target: a decision rule for

H0 ∶ θ1 = ⋯ = θm = θm+1 = θm+2 = ⋯,

against

H1 ∶ ∃k∗ ∈ Z+ ∶ θ1 = ⋯ = θm+k∗−1 ≠ θm+k∗ = θm+k∗+1 = ⋯.
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Types of detector

Common detectors are usually comparing estimators from different
subsamples of the data. Let θ̂b

a be an estimator of θ based on the
subsample Xa, . . . , Xb.

• (Ordinary) CUSUM investigates

θ̂m
1 − θ̂m+k

m+1 .

• Page-CUSUM uses a function of

{θ̂m
1 − θ̂m+k

m+j+1}j=0,...,k−1.

• Gösmann et al. (2021) propose using a function of

{θ̂m+j
1 − θ̂m+k

m+j+1}j=0,...,k−1.
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Comment on the detectors

Comment
When the change point is far away from Xm+1, θ̂m+k

m+1 maybe
‘corrupted’ by pre-change observations. Gösmann et al. (2021) point
out that Page-CUSUM and their proposal are able handle this
problem. However, we can see that this comes at the cost of
computational complexity.
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A specific detector

Gösmann et al. (2021) propose

Êm(k) = m−1/2 k−1max
j=0
(k − j)

√
(θ̂m+j

1 − θ̂m+k
m+j+1)

⊺Σ̂−1
m (θ̂

m+j
1 − θ̂m+k

m+j+1)

Several more elements are needed:

• Σ̂m: a long-run variance (LRV) estimator;
• w(⋅): a threshold function; and
• c(α): a critical value such that the test is level α (as m →∞).

A CP is detected if w(k/m)Êm(k) > c(α).
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Comment on the elements

Comment on Σ̂m

Although the LRV has not been formally introduced in our course, it
is not a completely new concept; see the asymptotic variance in the
central limit theorem (CLT) for m-dependent sequence, or the
spectral density.

Comment on w(⋅) (and c(α))
Restrictions on w(⋅) are needed so that sup∞k=1 w(k/m)Êm(k)
converges to some limiting distribution. Gösmann et al. (2021)
consider a family of functions such that the limiting distribution can
be simulated more easily. We guess some w(⋅) may lead to a
smaller detection delay but searching one seems difficult.
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Animation of the detector

The setting of this example (δ = 3 is used) will be introduced in our
simulations.
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Definition of the LRV

For presentation purpose, suppose d = 1 and θ = E(X).

CLT for the mean of stationary sequence
Consider a stationary sequence {Xt}t∈Z with mean µ and
autocovariance function γk . Under some suitable conditions (e.g.,
Hannan (1979)),

√
n (X̄n − µ) d→ N(0, σ2),

where σ2 = ∑k∈Z γk is called the LRV.

If the parameter of interest is not the mean, we can use the influence
function (assuming its existence) to define the corresponding LRV.
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Some LRV estimators

Consistent (small-b)

• Subsampling estimator, e.g., overlapping batch means
(Meketon and Schmeiser, 1984):

σ̂2
n,obm =

∑n
i=ℓn
(∑i

j=i−ℓn+1 Xj − ℓnX̄n)
2

∑n
i=ℓn ℓn

.

• Kernel estimator, e.g., Bartlett kernel estimator (Newey and
West, 1987):

σ̂2
n,bart =

ℓn

∑
k=−ℓn

(1 − ∣k ∣
ℓn
) 1

n

n
∑

i=∣k ∣+1
(Xi − X̄n)(Xi−∣k ∣ − X̄n).

Inconsistent (fixed-b)

• Self-normalizer (Shao, 2010)
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Difficulties with LRV estimation

In online CP detection, a LRV estimator often does not perform well
because

• the estimator is not robust to CP; or
• the estimator cannot be updated quickly.

Some existing solutions

• Gösmann et al. (2021) (use σ̂2
m): inefficient

• Dehling et al. (2020) (split the time series into 3): less efficient
• Shao and Zhang (2010) (account for the CP in SN): slower
• Chan and Yau (2017) (update σ̂2

n recursively): not robust

Comment
Gösmann et al. (2021) describe the use of σ̂2

m as the standard
approach. Indeed, several papers that we have read do the same.
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A simple improvement

Difference statistics: add robustness to σ̂2
n through

Di =
g
∑
j=0

djXi−jh

• {dj}: differencing sequence; g : differencing order; h: lag
• Chan (2021) proves the optimality in an offline setting

Window decomposition: allow recursive update of σ̂2
n through

Wn(i , j) = T (dT
n (i , j))S (dS

n (i , j)) .

• T (⋅): tapering function; S(⋅): subsampling function
• dT

n (i , j) and dS
n (i , j): distances between times i and j when

the sample size is n
• compatible with difference statistics
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Model

Consider a Bilinear model

Xi = (0.9 + 0.1εi)Xi−1 + εi , where εi
iid∼ N(0, 1).

Let µi = E(Xi). We are interested in testing

H0 ∶ µ1 = ⋯ = µm = µm+1 = ⋯,

against

H1 ∶ µ1 = ⋯ = µm+k∗−1 ≠ µm+k∗ = µm+k∗+1 = ⋯.

With 100 burn-in and m = 400 initial observations, we simulate 1000
replications of H1 by

X (δ)t = Xt + δ1t≥m+k∗ .
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Detector

The online CP detector in Gösmann et al. (2021) can be written as

Êm(k) = m−1/2 k−1max
j=0
(k − j) ∣X̄m+j

1 − X̄m+k
m+j+1∣ /σ̂,

where X̄b
a = (b − a + 1)−1∑b

i=a Xi and σ̂2 is a LRV estimator.

Following examples in Gösmann et al. (2021), we use

• threshold function: w(t) = (1 + t)−1;
• nominal size: α = 0.05; and
• stopping point: n∗ = 4000.
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Results when m + k∗ = 601
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Figure 1: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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Results when m + k∗ = 1001
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Figure 2: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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Results when m + k∗ = 1401
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Figure 3: Online CP detection at 5% nominal size using different LRV
estimation methods: (a) fix (dotted gray); (b) offline (dashed red); (c)
online (longdash blue).
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